Understanding the Impact of Simulation Learning Associated with SPHM and the Obese Patient

Author(s): Ed Hall,1 Mary Spangler,2 Susan Gallagher 3
1, 2 The Risk Authority, Palo Alto, California 94306 • 3 Celebration Institute, Inc., Houston Texas 77302

Abstract

Main Objective
SPHM and the patient of size is increasingly challenging as has been training skills relating to repositioning, transferring or mobilizing larger, heavier patients. Immersion Learning Centers are gaining momentum in areas such as aviation, trauma care, critical care, operating room skills and more. The aim of this study is to explore the impact of simulation learning in SPHM education and skill acquisition pertaining to the specialized handling and mobility techniques associated with the obese patient.

Methods
The Goodman Simulation Center at Stanford University was used as the setting for an obesity and SPHM education and training opportunity. Education included classroom presentations including: sensitivity, hazards of immobility, risk management, theory of SPHM and obesity. The Simulation Learning Lab experience complemented education, and included the following simulated stations: car extraction, catheterization, limb holding, “the boost,” early ambulation, unanticipated falls, bed egress, perineal care, panniculus holding, repositioning, lateral transfer, and more. Each station included a caregiver, a mobility coach and a simulated patient (model wearing a bariatric body suit).

Results
Participants, presenters, coaches and models expressed a high degree of collective learning using the simulated environment. Specifically, topics of greatest interest as a result of the simulated environment included 1) sensitivity, which otherwise could not be experienced in the classroom setting alone, 2) application of skills, which could not be learned by equipment training alone, and 3) the spirit of collaboration, which could not be learned without the simulated caregiver, patient and mobility coach.

Conclusion
The principles of simulated learning, which has been instrumental in training critical medical skills, can also have a role in training SPHM skills, especially as these skills relate to the more complex patient populations, such as the patient of size.

Significance
A designated simulation center, with a variety of learning opportunities, may offer engaging methods for complex skill acquisition.

References
Understanding the Impact of Simulation Learning Associated with SPHM and the Obese Patient

Author(s) Ed Hall,† Mary Spangler,‡ Susan Gallagher §
1-‡ The Risk Authority, Palo Alto, California 94306 • § Celebration Institute, Inc., Houston Texas 77302

Abstract

Main Objective
SPHM and the patient of size is increasingly challenging as has been training skills relating to repositioning, transferring or mobilizing larger, heavier patients. Immersion Learning Centers are gaining momentum in areas such as aviation, trauma care, critical care, operating room skills and more. The aim of this study is to explore the impact of simulation learning in SPHM education and skill acquisition pertaining to the specialized handling and mobility techniques associated with the obese patient.

Methods
The Goodman Simulation Center at Stanford University was used as the setting for an obesity and SPHM education and training opportunity. Education included classroom presentations including: sensitivity, hazards of immobility, risk management, theory of SPHM and obesity. The Simulation Learning Lab experience complemented education, and included the following simulated stations: car extraction, catheterization, limb holding, “the boost,” early ambulation, unanticipated falls, bed egress, perineal care, panniculus holding, repositioning, lateral transfer, and more. Each station included a caregiver, a mobility coach and a simulated patient (model wearing a bariatric body suit).

Results
Participants, presenters, coaches and models expressed a high degree of collective learning using the simulated environment. Specifically, topics of greatest interest as a result of the simulated environment included 1) sensitivity, which otherwise could not be experienced in the classroom setting alone, 2) application of skills, which could not be learned by equipment training alone, and 3) the spirit of collaboration, which could not be learned without the simulated caregiver, patient and mobility coach.

Conclusion
The principles of simulated learning, which has been instrumental in training critical medical skills, can also have a role in training SPHM skills, especially as these skills relate to the more complex patient populations, such as the patient of size.

Significance
A designated simulation center, with a variety of learning opportunities, may offer engaging methods for complex skill acquisition.

References